6. 3-Phenyl-4-hydroxy-6,7-dimethyl-cumarin³

Die nach dem Erhitzen (1 Std. auf 300°) von 4 g Phenylmalonsäure-bis-(3,4-dimethyl-phenol)-ester⁴ kristallin erstarrende Masse wird mit Benzol-Petroläther (1:1) angerieben. Ausbeute 2,4 g = 88%. Aus Alkohol oder Chlorbenzol Platten vom Schmp. 207 bis 208° ($229^{\circ 3}$).

 $C_{17}H_{14}O_3$. Ber. C 76,68, H 5,29. Gef. C 76,73, H 5,23.

7. 3-Phenyl-4-hydroxy-6,8-dimethyl-cumarin²

Aus 3 g Phenylmalonsäure-bis-(2,4-dimethyl-phenol)-ester entstehen nach dem beschriebenen Verfahren (75 Min. auf 300°) 1,85 g = 90% vom Schmp. 208 bis 209°. Platten aus Alkohol oder Chlorbenzol.

 $C_{17}H_{14}O_3$. Ber. C 76,68, H 5,29. Gef. C 76,73, H 5,29.

8. Phenylmalonsäure-bis-(m-kresol)-ester

 $21,5~\rm g$ m-Kresol und $18~\rm g$ Phenylmalonsäure werden mit $20~\rm g$ POCl $_3$ 45 Min. auf 100° erhitzt. Nach Zusatz von $\rm H_2O$ und verd. NaOH erstarrt das Reaktionsprodukt. Ausbeute $20~\rm g$. Aus Alkohol Platten vom Schmp. 101° .

 $C_{23}H_{20}O_4$. Ber. C 76,65, H 5,59. Gef. C 76,72, H 5,52.

9. Phenylmalonsäure-bis-(3,5-dimethyl-phenol)-ester

 $24~{\rm g}$ 3,5-Xylenol und $18~{\rm g}$ Phenylmalonsäure werden mit $20~{\rm g}$ POCl $_3$ 20 Min. bei 115° umgesetzt. Gereinigt aus Alkohol. Schmp. 88° .

 $C_{25}H_{24}O_4$. Ber. C 77,30, H 6,22. Gef. C 77,17, H 6,04.

10. Phenylmalonsäure-bis-(2,4-dimethyl-phenol)-ester

 $24~{\rm g}$ 2,4-Xylenol werden mit 18 g Phenylmalonsäure und $20,4~{\rm g}$ ${\rm POCl_3}$ 30 Min. auf 100° erhitzt, das flüssige Rohprodukt dann mit verd. NaOH behandelt, ausgeäthert und der Ätherrückstand mit festem Natriumbicarbonat angerieben, wobei der Ester erstarrt. Aus Alkohol gereinigt, Schmp. 83°.

$$C_{25}H_{24}O_4$$
. Ber. C 77,30, H 6,22. Gef. C 77,20, H 6,07.

Die vorliegende Arbeit wurde mit Unterstützung der $J.\ R.\ Geigy\ A.\ G.$, Basel, durchgeführt, wofür wir danken.

Über den räumlichen Bau einfacher Atomgruppen

(Kurze Mitteilung)

Von

E. L. Forster*

(Eingelangt am 14. September 1956)

Moleküle oder Ionen vom Typus AX_2 können gestreckt (linear) gebaut sein oder gewinkelt. Bei Atomgruppen von der Art AX_3 liegen die vier Atome entweder in einer Ebene (planar) oder bilden eine drei-

^{*} Anschrift: Wien XXI, Schwemmäckergasse 30.

seitige Pyramide mit A an der Spitze. Um auf Grund einer Bruttoformel unmittelbar den Bau einer Verbindung angeben zu können, läßt sich folgende einfache Regel verwenden:

Ein Molekül oder Ion AX_2 (AX_3) ist linear (eben), wenn die Summe der d-Zahlen $\Sigma d_i = 8$, andernfalls gewinkelt (pyramidal).

Dabei ist unter der d-Zahl ("Differenz" oder "deficiency") eines Atoms¹ die Zahl der Valenzelektronen gemeint, die diesem Atom auf das Oktett (beziehungsweise auf 2 im Falle des Wasserstoffatoms) fehlen:

$$d_i \equiv p_i - e_i, \tag{1}$$

 p_i ... für Wasserstoff 2, für die übrigen Atome 8, e_i ... Zahl der Valenzelektronen eines Atoms i.

Es betragen also die d-Werte für

Bei Ionen wird die Ladung des Ions (einschließlich Vorzeichen) wie eine d-Zahl eines Atoms behandelt. So beträgt beispielsweise die Summe der d-Zahlen für das Nitration 8 — nämlich 3 für den Stickstoff, $3 \cdot 2 = 6$ für die drei Sauerstoffatome und — 1 für die negative Ladung des Ions. Nach der Regel ist daher für das Nitration ebener Bau zu erwarten.

Einige weitere Beispiele:

Formel	Summe der d-Zahlen	Struktur
CO ₂ , CS ₂	$4+2\cdot 2 = 8$	linear
ICN	1 + 4 + 3 = 8	linear
₁₃	$3 \cdot 3 - 1 = 8$	linear
ν,ο	$2 \cdot 3 + 2 = 8$	linear
NO_2 , (NO_2^-)	$3+2\cdot 2 \ (-1)=7 \ (6)$	gewinkelt
80,	$2+2\cdot 2 = 6$	gewinkelt
H_2O , H_2S	$2 \cdot 1 + 2 = 4$	gewinkelt
3F ₂	$5 + 3 \cdot 1 = 8$	eben
$3O_3^{3-3}\dots$	$5 + 3 \cdot 2 - 3 = 8$	eben.
$\mathrm{CO_3^{-2}}\dots$	$4 + 3 \cdot 2 - 2 = 8$	eben
OlO ₃ -, BrO ₃	$1 + 3 \cdot 2 - 1 = 6$	pyramidal
NH ₃	$3+3\cdot 1 = 6$	pyramidal
AsO_3^{-3}	$3 + 3 \cdot 2 - 3 = 6$	pyramidal

In der Literatur wurden zwei Regeln beschrieben, die ebenfalls Schlüsse von der Formel auf den räumlichen Bau zulassen: die Regeln

¹ E. L. Forster, Mh. Chem. 85, 1104 (1954).

von *Helferich*² und die *Zachariasen*-Regel³. Beide sind in der oben angeführten enthalten.

Die Helferich-Regeln lauten:

- 1. "Atomgruppierungen der allgemeinen Formel AX₂ (X untereinander gleich oder verschieden) haben linearen Bau, wenn am Zentralatom keine unbeteiligten Elektronen vorhanden sind. Sie sind 'gewinkelt', wenn das Zentralatom A ein oder zwei unbeteiligte Elektronenpaare oder ein einzelnes, nicht an den Bindungen beteiligtes Elektron trägt.
- 2. Atomgruppierungen der allgemeinen Formel AX_3 haben ebene Anordnung (X untereinander gleich oder verschieden), wenn das Zentralatom A keine unbeteiligten Elektronen trägt. Es bildet sich pyramidale Anordnung, mit A an der Spitze einer dreiseitigen Pyramide, aus, wenn das Zentralatom A unbeteiligte Elektronen ein unbeteiligtes Elektronenpaar trägt."

Nach der anfangs angegebenen Regel muß für lineare Atomgruppen AX_2 und ebene vom Typ AX_3 , die wir hier unter der Bezeichnung "symmetrische Verbindungen" zusammenfassen wollen, die Summe der d-Zahlen gleich 8 sein. Anderseits ist die Gesamtzahl der Atombindungen einer Verbindung gleich $^1/_2 \Sigma d_i$ (1, Formel 4), in den genannten beiden Fällen also 4. Wenn nun die Liganden untereinander nicht verbunden sind, ist das Zentralatom an jeder Bindung beteiligt, hat also ebenfalls 4 Bindungen, wofür 8 Elektronen benötigt werden; daher kann es — die Gültigkeit der Oktettregel von Kossel-Lewis vorausgesetzt — keine freien Elektronen besitzen. Gerade das fordern auch die Regeln von Heljerich.

Nach der Regel von Zachariasen³, ⁴ ist "eine Gruppe oder ein Molekül $\left\{ \begin{array}{l} {\rm XY_2~linear,} \\ {\rm XY_3~planar,} \end{array} \right.$ wenn die Zahl der Valenzelektronen ($\varSigma e$) gegeben ist durch $\left\{ \begin{array}{l} {\it \Sigma}e=2~p, \\ {\it \Sigma}e=3~p, \end{array} \right.$ wobei p die Zahl der Valenzelektronen desjenigen Edelgases ist, welches im periodischen System auf das Atom Y folgt. Wenn die Zahl der Valenzelektronen größer ist als $\left\{ \begin{array}{l} 2~p, \\ 3~p, \end{array} \right.$ dann ist die Gruppe oder das Molekül $\left\{ \begin{array}{l} {\rm winkelig} \\ {\rm pyramidal.} \end{array} \right.$

Anders formuliert besagt die Regel, daß die Summe der Valenzelektronen für lineare Atomgruppen vom Typ AX_2 bzw. für ebene An-

² B. Helferich, Z. Naturforsch. 1, 666 (1946).

³ W. H. Zachariasen, J. Amer. Chem. Soc. 53, 2123 (1931). — Vgl. A. Eucken, Grundriß der physikalischen Chemie, S. 512. Leipzig: Akademische Verlagsgesellschaft. 1942.

⁴ J. Hurwic, Roczniki Chemii 29, 769 (1955).

ordnung für AX_3 ("symmetrische Verbindungen") $\Sigma e_i = n \cdot p$ beträgt $(n = \mathrm{Zahl} \ \mathrm{der} \ \mathrm{Liganden}, \ \mathrm{also} \ 2 \ \mathrm{bzw}. \ 3)$. Der Definition nach ist $d_i = p_i - e_i$ (Formel I). Daraus folgt:

$$\Sigma d_i = p_A + n \cdot p_X - \Sigma e_i$$

Diese Summe der d-Zahlen soll aber für symmetrische Verbindungen gleich sein dem p_A . Daraus ergibt sich unmittelbar, daß $n \cdot p_X = \Sigma e_i$, was der Regel von Zachariasen entspricht.

Es wäre noch darauf hinzuweisen, daß für Verbindungen mit Wasserstoffbrücken (also von der Art HX_2) mit Wasserstoff als Zentralatom eine Modifikation der Regel zu erwarten ist — in diesem Falle wäre 8 durch 2 zu ersetzen, wie ja auch bei der Definition der d-Zahl hervorgehoben wurde, daß für Wasserstoff die d-Zahl nicht die Differenz der Valenzelektronen auf 8, sondern auf 2 bedeutet.

Zur Kenntnis des m, m'-Divinylazobenzols und des m, m'-Divinylazoxybenzols

(Kurze Mitteilung)

Von

J. W. Breitenbach und H. Frittum

Aus dem I. Chemischen Institut der Universität Wien

(Eingelangt am 24. September 1956)

Seit längerer Zeit beschäftigen wir uns schon mit der Copolymerisation von Mono- und Divinylverbindungen. Bei unseren Versuchen wurde als Divinylverbindung neben anderen Substanzen auch eine Divinylverbindung (I) verwendet¹, die nach den Angaben von G. Komppa² durch Reduktion des m-Nitrostyrols mit alkalischer Stannitlösung dargestellt worden war. Nach Komppa sollte es sich um m,m'-Divinylazobenzol mit einem Schmp. von 38 bis 39° handeln.

Inzwischen haben aber R. H. Wiley und N. R. Smith³ diese Azoverbindung (II) durch Oxydation des Hydrazokörpers erhalten und finden dafür den Schmp. 84°. Dieser Widerspruch veranlaßte uns, die nach Komppa dargestellte Substanz näher zu untersuchen. Die Elementaranalyse ergab Werte, die nicht der Azo-, sondern der Azoxyverbindung entsprachen. Auch das Absorptionsspektrum im UV, Sichtbaren und IR stimmen damit überein. Die Azoverbindung II hat ein Absorptions-

¹ J. W. Breitenbach, Exper. 3, 239 (1947).

² G. Komppa, Über kernsubstituierte Styrole, Dissertation Helsingfors (1893).

³ R. H. Wiley und N. R. Smith, J. Amer. Chem. Soc. 70, 2295 (1948).